فایل ویکی تمامی رشته ها فایل ویکی دروس تخصصی موفقیت پاورپوینت ارتباط با ما دانلود

اطلاعیه فروشگاه

با توجه به تغییرات ایجاد شده در بانک ملی خرید زیر 5000 تومان توسط کارت بانک ملی امکان پذیر نیست برای خرید های زیر 5000 تومان لطفا از کارت های بانک های دیگر استفاده نمایید.

دانلود تحقیق مفاهیم بقا

دانلود تحقیق مفاهیم بقا

  مقدمه اي در مفاهيم بقا:

در اين بخش پارامترهاي اصلي را كه در مدل داده هاي بقا به كار مي روند بررسي مي كنيم.

فرض كنيد زماني تا بعضي پيشامدهاي معين مانند مرگ، ظاهر شدن تومور، پيشرفت يك بيماري، برگشت بيماري،  فرسودگي تجهيزات، توقف استعمال دخانيات، و غيره باشد.

با دقت بيشتري يك متغير تصادفي نامنفي از يك جامعه همپراش[1] است.  توزيع  را مي توان توسط 4 تابعي كه در زير معرفي مي كنيم، مشخص كرد.

  • تابع بقا[2] ، احتمال اين است كه فردي بعد از زمان زنده بماند.
  • تابع نسبت بخت[3] ، شانس فردي در سن است كه پيشامدي را در لحظه بعدي تجربه كند.
  • تابع چگالي احتمال[4] (يا جرم احتمال)، احتمال غيرشرطي از رخ دادن پيشامدي در زماناست.
  • ميانگين طول عمر باقيمانده[5] در زمان، ميانگين زمان تا پيشامد مطلوب است، به شرطي كه پيشامد دررخ نداده باشد(كه در اينجا مورد بحث قرار نمي گيرد).

اگر هر يك از اين توابع مشخص باشند، سه تاي ديگر به طور يكتا تعيين مي شوند. در عمل اين 4 تابع، همراه تابع بخت تجمعي[6] براي تشريح مفاهيم مختلف توزيع  به كار مي روند.

تعريف 1-1-1 (تابع بقا)   كميت اصلي كه براي توصيف پديده هاي زمان تا پيشامد[7] بكار مي رود تابع بقا است . احتمال اين كه فردي بعد زمان  زنده بماند (تجربه پيشامد بعد زمان ) ، كه به صورت زير تعريف مي شود

توجه كنيد كه تابع بقا، تابعي غير صعودي با مقدار يك در مبدأ و صفر در بينهايت است. اگر  متغير تصادفي پيوسته باشد، پس  تابعي پيوسته و اكيداً نزولي است.

وقتي  متغير تصادفي است، تابع بقا متمم تابع توزيع تجمعي است، يعني كه . همچنين تابع بقا انتگرال تابع چگالي احتمال  است، يعني

بنابراين

وقتي  متغير تصادفي گسسته است به تكنيكهاي مختلفي نياز داريم. متغيرهاي تصادفي گسسته در تحليلهاي بقا بواسطه گردكردن اندازه ها، طبقه بندي زمانهاي شكست به فاصله ها و يا زماني كه طول عمرها به تعداد درستي از واحدها ارجاع شوند، بوجود مي آيند. فرض كنيد كه مقادير ، را با تابع جرم احتمال  بگيرد، كه  ، تابع بقا براي متغير تصادفي گسسته  به صورت زير داده مي شود

تعريف 1-1-2 (تابع بخت) نسبت بخت به صورت زير تعريف مي شود

اگر  متغير تصادفي پيوسته باشد، پس

يك كميت نسبي، تابع بخت تجمعي،  است كه به صورت زير تعريف مي شود

بنابراين براي طول عمرهاي پيوسته

1-2     خلاصه اي از مقدمات

بعضي از تعاريف و لم هايي كه در بخشهاي بعد مورد استفاده قرار مي گيرند در زير بيان مي داريم.

تعريف 1-2-1 (محكم بودن[8])   خانواده هاي  روي مجموعه انديس  ي مفروض محكم است اگر براي هر ، فاصله متناهي وجود داشته باشد به طوري كه

لم 1-2-1 (لم اسلاتسكي[9])   اگر ،، هر سه در توزيع، كه  و ثابت هستند.آنگاه  در توزيع.

تعريف 1-2-2 (تابع كدلاگ[10])   فرض كنيد  فضاي توابع حقيقي  روي  باشد كه از راست پيوسته اند و حد چپ دارند يعني

  • براي ،  وجود داشته باشد و
  • براي ،  وجود داشته باشد

توابعي كه اين خاصيت را دارند توابع كدلاگ ناميده مي شوند. گوييم تابع  در  ناپيوستگي نوع اول دارد اگر  و  وجود داشته اما متفاوت باشند و  بين آنها قرار گيرد. نا پيوستگي هاي تابع كدلاگ از نوع اول مي باشند.

تعريف 1-2-3 (عملگر خطي)   فرض كنيد  و  دو فضاي خطي روي  باشند. تابع  را يك عملگر خطي[11] از به  گوئيم هرگاه به ازاي هر  و هر  داشته باشيم

بايد توجه داشت براي اينكه رابطه بالا معني دار باشد، بايستي  و داراي يك ميدان باشند يعني ميدان هر دوي آنها  يا  باشد.

قضيه 1-2-1 (قضيه نگاشت پيوستگي[12])   اگر دنباله  در احتمال به  همگرا باشد و  تابعي پيوسته در   باشد آنگاه  در احتمال به  همگراست.

1-3     روش دلتا[13]

نتايج مهم و مثالها

فرض كنيد  برآوردگري براي  باشد كه موجود است، اما كميت مورد نظر براي تابع معلوم  است. يك برآوردگر طبيعي  است. حال خاصيتهاي مجانبي  چگونه از خاصيتهاي مجانبي  پيروي مي‌كنند؟ اولين نتيجه، نتيجه فوري از قضيه نگاشت پيوستگي است. اگر دنباله  در احتمال به  همگرا باشد و  در  پيوسته باشد، پس  در احتمال به  همگراست. اما علاقه اصلي ما، سوأل مشابهي در ارتباط با توزيع‌هاي حدي است. در حالت خاص، اگر  همگراي ضعيف به يك توزيع حدي باشد، آيا اين براي  نيز درست است؟ اگر  مشخص باشد، پس جواب مثبت است. به طور غير معمول داريم

كه  مشتق  در  است. اگر براي متغير ، ، پس انتظار داريم كه

در حالت خاص اگر  به طور مجاني  باشد، پس انتظارداريم كه  به طور مجانبي  باشد، اين در اصول كلي‌ترين در قضيه زير ثابت مي‌شود.

در پاراگراف قبلي،  حقيقي- مقدار است، اما بيشتر بررسي آماره  مورد نظر است كه از چندين آماره اصلي ساخته شده است. بنابراين حالتي كه  برداري مقدار است را بررسي مي‌كنيم كه  تابع داده‌ شده اي است كه حداقل در همسايگي  تعريف شده باشد. يادآوري مي‌كنيم كه  در مشخص است اگر نگاشت خطي  وجود داشته باشد به طوري كه

همه عبارت‌ها در اين معادله برداري‌هايي به طول هستند، و  نرم اقليدسي است. نگاشت خطي  بعضي اوقات "مشتق كلي" ناميده مي‌شود، چون نقطه مقابل مشتقات جزئي. شرط كافي براي مشخص بودن  اين است كه مشتقات جزئي  در همسايگي  وجود داشته و در پيوسته باشند (فقط وجود مشتقات جزئي كافي نيست). در هر حالتي، مشتق كلي از مشتقات جزئي پيدا مي‌شود .

اگر  مشخص باشد، آن گاه به طور جزئي مشخص است، و نگاشت مشتق  ماتريس چندگانه‌اي به صورت زير است

اگر وابستگي مشتق  روي  پيوسته باشد. آنگاه  مشخص پيوسته ناميده مي‌شود.

بهتر است فكر كنيم مانند نزديكي خطي  به تابع  است، نسبت به مجموعه از مشتقات جزئي. بنابراين مشتق در نقطه ، نگاشتي خطي است. اگر فضاي برد  خط حقيقي باشد. (كه مشتق برداري افقي است)، پس مشتق، تا نژانت تابع نيز ناميده مي‌شود.

توجه :

مشتق در يك نقطه معمولاً به صورت  نوشته مي‌شود كه در اين جا  است. درحالي كه  يك عدد است منظور دوم  مشخص كردن نگاشتي است كه به صورت تعريف مي‌شود.

بنابراين در اصطلاحات حاضر، تابع مشتق معمول نگاشتي است از IR به توي مجموعه نگاشتهاي خطي از ، نه نگاشتي از . به طور ترسيمي، تقريب خوب ، تا نژانت تابع  در  است.

اينجا روش دلتا در ابعاد بالاتري است.

قضيه 1-3-1   فرض كنيد نگاشتي اندازه پذير تعريف شده روي زير مجموعه‌اي از باشد كه در  مشخص است. فرض كنيد  بردارهاي تصادفي باشند و مقاديري كه مي‌گيرند در دامنه  باشند.

اگر  براي اعداد  پس

به علاوه تفاوت بين  و  در احتمال به صفر همگراست.

اثبات : وقتي ، بوسيله لم اسلاتسكي داريم

بنابراين  در احتمال به صفر همگراست. تابع  را به صورت زير تعريف مي‌كنيم

با مشخص بودن ،  در صفر پيوسته است. بنابراين به وسيله قضيه نگاشت پيوستگي

از اين رو باز بوسيله لم اسلاتسكي و قضيه نگاشت پيوستگي

در نتيجه

چون ماتريس چند گانه پيوسته است، بوسيله قضيه نگاشت پيوستگي  بالاخره با به كار بردن لم اسلاتسكي، نتيجه مي‌گيريم كه دنباله  حد ضعيف مشابهي دارد.

حالت معمول اين است  به يك توزيع نرمال چند متغيره  همگراست. پس نتيجه اي از قضيه اين است كه دنباله  در قانون به توزيع  همگراست.

مثال 1-3-1)واريانس نمونه)   واريانس نمونه از  مشاهده  به صورت  تعريف مي‌شود، و مي‌تواند به صورت  براي تابع  نوشته شود )براي سادگي نشان  را به جاي  به كار مي‌بريم(فرض كنيد  بر اساس نمونه‌اي از توزيعي است كه گشتاوراول تا چهارم،، متناهي هستند.

بوسيله قضيه حد مركزي چند متغيره

نگاشت  در نقطه  مشخص است، با مشتق  بنابراين اگر بردار  داراي توزيع نرمال در نمايش آخر باشند، آنگاه

متغيير بعدي به صورت نرمال توزيع شده كه ميانگين صفر و واريانسي دارد كه مي‌تواند در  بيان شود.

در حالتي كه ، واريانس  است. حالت كلي مي تواند به اين حالت القا شود، زيرا  تغيير نمي‌كند اگر مشاهدات  با متغير‌هاي  مركزي  جايگزين شوند. براي گشتاور مركزي  مي‌نويسيم  توجه كنيد كه  و  واريانس مشاهدات اصلي است، بدست مي‌آوريم

در نظريه لم اسلاتسكي، نتايج يكساني براي حالت نااريب  از واريانس نمونه برقرار است . براي اينكه

1-4     فرآيندهاي وينر و گوسي مربوطه

1-4-1     اطلاعي از فرآيند وينر

گياه شناس انگليسي براون[14] در 1826 مشاهده كرد كه ذرات ميكروسكوپي معلق در يك مايع تابع تماسهاي مولكولي دائمي هستند و حركات زيگراگي دارند (حركت براوني[15]). اينستين[16] (1905) كشف كرد كه اين حركات مي‌توانند بوسيلة قوانين احتمال تحليل شوند. يكي از ساده‌ترين مدلها براي حركت براوني يك بعدي مي‌تواند بر حسب پرتاب سكه يا مدل گام تصادفي داده شود. فرض كنيد ذره‌اي روي خط حقيقي با شروع از مبدأ حركت كند. در هر واحد زماني اين ذره مي‌تواند با احتمال 2/1 يك گام به راست يا يك گام به چپ حركت كند، فرض كنيد ا ين گامها مستقل باشند، به -اُمين گام ذره، مي‌گوييم، پس  ،  ، ... متغيرهاي تصادفي مستقل هستند با

و بعد از  گام ذره در  قرار دارد. بنابراين مسيرهاي بوجود آمدة ،،...وقتي واحد زماني و گامها به اندازه كافي كوچك باشند كاملاً از حركت براوني تبعيت مي‌كنند.

 در مدل واقعي حركت برواني، ذره گامهاي آني را به راست يا چپ طي مي‌كند ، يعني مقياس زماني پيوسته به جاي گسسته به كار مي‌رود، و طولهاي ، گامهايي هستند كه به جاي توزيع بالا به صورت نرمال توزيع شده‌اند.

فهرست مطالب:

  • فصل اول : تعاريف و مفاهيم اوليه                                                              1
  • 1-1 مقدمه اي در مفاهيم بقا                                                           2
  • 1-2 خلاصه اي از مقدمات                                                           5
  • 1-3 روش دلتا ، نتايج مهم و مثالها                                                 6
  • 1-4 فرآيندهاي وينر و گوسي مربوطه                                                 11
  • 1-4-1 اطلاعي از فرآيند وينر                                                           11
  • 1-4-2 تعريف و وجود فرآيند وينر                                                 12
  • 1-4-3 پل براوني                                                                    12
  • فصل دوم : سانسور و برش                                                           14
  • 2ـ1 مقدمه                                                                              15
  • 2ـ2 سانسور راست                                                                    17
  • 2-2-1 سانسور نوع يك                                                           17
  • 2-2-2 سانسور پيشروي نوع يك                                                 19
  • 2-2-3 سانسور تعميم ‌يافته نوع يك                                       21
  • 2-2-4 سانسور نوع دو                                                           23
  • 2-2-5 سانسور پيشروي نوع دو تعميم                                       24
  • 2-2-6 سانسور تصادفي                                                           24
  • 2-3 سانسور چپ و فاصله‌اي                                                           26
  • 2-3-1 سانسور چپ                                                           26
  • 2-3-2 سانسور فاصله‌اي                                                                    28
  • 2-4 برش                                                                              29
  • برش راست                                                                              29
  • 2-5 ساختار درستنمايي براي داده‌هاي سانسور شده و داده‌هاي بريده شده           30
  • نكات عملي                                                                    35
  • نكات تئوري                                                                              35
  • 2-6 برآورد ناپارامتري كميتهاي اصلي براي داده‌هاي از راست سانسور و بريده شده از چپ 37
  • 2-6-2 برآوردگرهاي توابع بقا و بخت تجمعي براي داده‌هاي از راست سانسور                   38
  • فصل سوم: برآورد ناپارامتري از داده هاي بقاي مقطعي 42
  • 3-1 مقدمه                                                                                        43
  • 3-2 برآورد حد- حاصلضربي در مقابل برآورد واردي                                     51
  • 3-2-1 يك حالت خاص                                                                52
  • 3-2-2 حالت كلي                                                                        54
  • 3-3 برآورد ناپارامتري                                                                        58
  • 3-4 خاصيت هاي مجانبي                                                             63
  • 3-5 كوواريانس هاي مجانبي توأم، برآورد ناپارامتري                                  81
  • 3-6 برآورد ناپارامتري                                                                       85
  • 3-6-1 NPMLEي                                                        87
  • 3-6-2 اعتبار                                                                           88
  • 3-6-3 بوت استرپ بديهي تعميم يافته                                                         89
  • فصل چهارم : بررسي خواص مجانبي MLE ي تابع بقا درنمونه­گيري در طول- اُريب همراه با سانسور راست : رويکردي غيرشرطي                                                                 92
  • 4-1 مقدمه                                                                                        93
  • 4- 2 مدل هاي شرطي در مقايسه با مدل­هاي غيرشرطي                                   96
  • 4-3 علامت­گذاري و موارد مقدماتي                                                                   97
  • 4-4 برآورد و مجانب ها                                                                        100
  • 4-5 کاربرد براي بقاي همراه با دمانس                                                        121
  • 4-6 تفسيرهاي آخر                                                                                122

شامل 122 صفحه فایل WORD قابل ویرایش


اشتراک بگذارید:


پرداخت اینترنتی - دانلود سریع - اطمینان از خرید

پرداخت و دانلود

مبلغ قابل پرداخت 6,000 تومان
عملیات پرداخت با همکاری بانک انجام می شود

درصورتیکه برای خرید اینترنتی نیاز به راهنمایی دارید اینجا کلیک کنید


فایل هایی که پس از پرداخت می توانید دانلود کنید

نام فایلحجم فایل
TAHGHIGH_673525_9232.zip1.3 MB





آخرین محصولات فروشگاه